

Challenges and progress in design of Electical IC's for Analog Drive Optics

2022.12.16

Introduction to InSiGa

Company started in July 2016 Focus is on high speed optical communication market -10Gbs to 800Gbs

Fabless business model Differentiation-Low power, small size IC's for 10-800Gbs market

Market Focus

5G Mid haul 5G Back haul 5G Front haul 200G-800G Coherent 100G Datacenter 200G Datacenter 400G Datacenter 800G Datacenter 10G PON (OLT) 50G PON

- Accelerated adoption of higher bandwidth modules
- Multi level Modulation schemes (PAM4, QAM) in mass deployment already
- DSP driven modules primarily for PAM4 modulation
- High cost pressures
- Bandwidth doubling almost every 2-3 years
- Silicon Photonics becoming prevalent for high speed modules

- DML (Directly Modulated Lasers)
- EML (Electrically Modulated Lasers)
- Thin Film Lithium Niobate based MZ
- Silicon Photonics based MZ

Comparison of eye @ 53Gbauds

DML@53Gbaud/s

EML@53Gbaud/s

Si Photonics@53Gbaud/s

Outer ER=4dB TDECQ=2.2dB

Optical Technology Choices – Transmitter

For 53Gbaud/s PAM4 (100Gbs/lane)

Parameter	DML	EML	Si Ph	TFLN
Performance	3	2	1	-
Cost	1	3	2	-
Power	1	2	2	-
Scalability	2	2	1	-

Ranking – 1 is best, 3 is worst

Silicon Photonics – Challenges

- Power Dissipation
 - □Vpi (high drive)
 - **High power lasers**
- Optical Coupling
- Controls- Heater, Bias, CW laser

Silicon Modulator Design- Key Parameters

Key parameters for Si MZ Modulator design

- □Vpi ↓
- □Bandwidth ↑
- \Box Optical Loss \downarrow
- \Box Length of Modulator (size) \downarrow
- \Box Impedance of Modulator \uparrow

Key parameters for Si Photonics Modulator Driver design

- □Output Swing ↑
- □Bandwidth ↑
- □Size↓
- □Gain ↑
- \Box Linearity (THD \downarrow)
- \Box Impedance of Driver \uparrow
- \Box Power Dissipation \downarrow

InSiGa 400Gbs Driver- ISG-D5640 (Technology – SiGe)

- Output Swing- 3.5Vpp
- Bandwidth > 40GHz
- Die Size 1.7x3.7mm
- Gain 17dB
- THD < 3%
- Driver Impedance- Very high
- Power Dissipation/ch- 260mW

- \Box Impedance of Driver \uparrow
- lacksquare Power Dissipation \checkmark

Silicon based Receiver - Key Parameters

Key parameters for Receiver design

- \Box Bandwidth \uparrow
- \Box Optical Loss \checkmark
- \Box Dark Current \checkmark
- □ PD Responsivity↑
- \square PD Parasitic Capacitance \checkmark

Transimpedance Amplifier(TIA) - Key parameters

Key parameters for TIA design

□ Noise↓
□ Bandwidth ↑
□ Size↓
□ Gain ↑
□ Linearity (THD ↓)
□ Power Dissipation ↓

InSiGa 400Gbs TIA- ISG-T5743 (Technology – SiGe)

- Input Noise- 2.2uA
- Bandwidth > 30GHz
- Die Size 1.3x2.35mm
- Gain 4.5kohm
- THD < 3%
- Power Dissipation/ch-160mW

- 🗖 Noise 🗸
- \Box Bandwidth \uparrow
- □ Size↓
- 🗖 Gain ↑

□ Linearity (THD ↓)

 \Box Power Dissipation \downarrow

VDD=3.3V, IDD=39mA, GC=2.5V, PD Cap=80fF, <u>Rpd</u>=10ohm, <u>Lbw</u>=0.5nH

ANALOG DRIVE OPTICS (ADO)

What are Analog Drive Modules (ADM)?

Analog Drive Modules - Modules without DSP

No gearbox requirement

• Input Signal rate and modulation is same as optical output

Analog Drive Modules - Modules without DSP

Analog Drive Modules - Modules without DSP

Advantages

- Low Cost
- Low Power Dissipation
- Higher channel/bandwidth density
- Low Latency

Analog Drive Modules - Modules without DSP

Challenges

- Overcoming channel Loss on host/module
- Connector Mismatch issues (No resonance in band due to connector and module interface)
- Phase/Group Delay Compensation

What are challenges for Modulator Driver for ADM?

Challenges for Modulator Driver Design

- Equalization capability to compensate for losses
- Good Input return loss to minimize reflection issues
- Good Phase response (Group delay)
- Good linearity

m7

15

10

20

freq, GHz

25

30

0

-2-

-4-

-6--8-

-10-

-12-

-14-

-16

Relative Gain (dB)

freq=26.50GHz dB(S(1,2))+42-.4=-1.554

m7

35

40

45

Measured Driver + PIC Performance on EVB

45

40

35

30

25

15

10

5

20

freq, GHz

Test Setup

Si PIC

FA

Lowest Equalization from InSiGa Driver- ISG-D5640

-35-

Measured Driver + PIC Performance on EVB

Si PIC

Maximum Equalization from InSiGa Driver- ISG-D5640

Test Setup with PCB loss

Loss of PCB – 14cm trace

Measured Eye at 26.5Gbaud/s

TDECQ=2.09dB

TDECQ=4.5dB

Without Equalization from Driver

With Equalization from Driver

Measured BER with Loss

14cm of PCB loss at TX input 14cm of PCB loss at RX Output

RX side uses InSiGa's TIA ISG-T5713 inside a TO

Measured Eye at 53Gbaud/s

TDECQ=1.8dB

With No loss at TX input

TDECQ=2.7dB

With Equalization after loss at TX input

AOC – Eg. 400G (50Gx8)

Advantages

- The Equalization from TX can be optimized to get best BER- can compensate for RX side by over-equalization on TX
- High number of channels bring out true value of Silicon PIC's
- Length of Cable can easily reach >100m
- SM Fiber array cost cheaper than MM fiber array
- Power Dissipation lower than DSP/CDR driven modules

Measured BER data shows high probability of this solution being able to meet system requirements

ADM - applications

AOC – 400G (100Gx4)

Advantages

- The Equalization from TX can be optimized to get best BER- can compensate for RX side by over-equalization on TX
- Length of Cable can easily reach >100m
- SM Fiber array cost cheaper than MM fiber array
- Power Dissipation lower than DSP/CDR driven modules

FFE capability on RX side for 100G IO (switch and NIC) will be important factor in determining performance

ADM – applications

High Performance Computing (HPC) – Low Latency requirements

Advantages

- The solution can be based on high speed NRZ modulation without FEC (50Gbs NRZ) to achieve high bandwidth - Eg. 50Gbs x 8 for 400G requirements
- Lowest latency

50G NRZ

Error free operation from -9dBm to 2dBm OMA

ADM - applications

400G DR4

Challenges

- TX and RX need to be independently optimized
- Higher Loss budget compared to AOC
- Gain of TIA needs to be higher
- Pre-emphasis capability from TIA?

Need testing with 100G I/O on Switch/NIC to determine exact TX and RX requirements

Analog Drive Optical Engines

CPO – Co-Packaged Optics

Challenges

- Density (Area)
- Power Dissipation (Heat Management)
- Packaging (2.5D vs 3D)
- Cost

CPO – Co-Packaged Optics

Electrical IC direction

- Density (Area)
 - **D** Equalization capability
 - □ 8 channels/die (pitch 375um)
 - Integrating Si PIC controls like CW laser bias control, heater control, MPD monitoring etc, with Driver IC
- Power Dissipation
 - □ (Removal of DSP, Low Power Driver- 260mW/ch)
- Packaging
 - □ Tight Pitch Cu Pillars for Flip-chip assembly

Advantages of Si PIC's

- Best linearity (DML, VCSEL have asymmetric rise/fall, EML single ended drive)
- High level of integration no. of channels, MPD etc.
- Bandwidth roll-off very linear- easier to equalize
- Temperature of Operation
- Cost

Thank you!

Questions?

